
Component-Based Software Development

Todd Urbatsch, CCS-4

collaborators: Tom Evans, Rob Lowrie, Doug Kothe

Talk to Code Strategy Implementation Team

13 August 2002

LA-UR-03-3937

• Define “components”

• Example of high-level components

• Role of components in software development

• Role of components in verification and validation

• Experiences and thoughts

• Demonstration

• Proposals for moving ahead

Goal of Component-Based Software Development

develop high-quality software that we can verify and con-
tribute to validation efforts.



Definition of Components

Components are physically independent software modules

designed with standard, clearly defined interfaces that

protect them from software changes outside their bound-

aries. Applications are then composed of components,

perhaps even at run time. Because component commu-

nication occurs only through well-defined interfaces, an

application is changed by modifying one or more compo-

nents, without fear of disturbing other application com-

ponents.

• Described by contracts.

• input

• function

• output

• behavior is repeatable



Simple example of high-level components

diagnostics

material state

unsplit
rad/hydro

your
rad

my 
hydro

strength

mesh
our

your
hydro

their
mesh

EOS

output

Each box is made up of lower-level components, possibly

shared:

Particle<MeshType>: transport

(simple test, gray transport test, mg transport test)

RZWedgeMesh:get db (simple one cell RZWedge, tstAMR)



Role of Components in Software Development

Four aspects of software development:

• Design

• Development

• Archiving

• Principles



Software Development: Design

• components

• levelized design

• Design-by-Contract: Require, Check, Ensure, Insist

• template parameters in generic components

− Mesh Type (OS AMR, RZ Wedge, Tet)

− Frequency Type (Gray Frequency, MG Frequency)



Milagro Levelized Diagram

Note that all arrows GO DOWNWARD. Also, dotted lines indicate a
dependency for component testing, not a package dependency. Ovals
are Milagro components; boxes are Draco components.



Software Development: Developement

• version control

• build system

• releases

• peer-review

− pair programming

− code walk-throughs

− code reviews

− post-mortem reviews

• testing

− unit

− integral

− verification

− shunt

− regression



Software Development: Archiving

• requirements documents

• release notes

− methods manual

− users’ guide

− verification

• interface documents

• technical memorandums

• research notes



Software Development: Principles

• customer focus/product oriented

• staged delivery/iterative development

• unified process

− inception

− elaboration

− construction

− transition



Levelization as a Design Analysis Tool



Benefits of Levelized Components

• unit testing is possible

− isolates bugs

− effort goes as 2N + overhead instead of N 2

• unit tests are repeatable

− regression

− component modification

• exposes poor designs

• helps assign responsibility for bugs/issues

• components can be shared or interchanged

− improvements propagate

− effort amortized

− sharing requires overhead - version control miti-

gates

• does not preclude integral tests



Role of Components in Verification

“Are you solving the equations correctly?”

• knowing component is correct

• proving component is correct

• essential for approaching predictive capability

• required for any mathematical expression

− numerical methods

− remapping data

− simply accessing data is an “=”

− etc.



Role of Components in Validation

“Are you solving the correct equations?”

• difficult work

• ongoing

• should not overlap debugging or verification



Conclusions

• proven success with good SQE practices such as com-

ponents

− improved quality

− ability to verify every component

− code re-use

− easier maintenance

− easier to add new capabilities

− increased confidence

− one bug in 1M cpu-hours of use

• hope others will adopt some of these practices

• good SQE practices “necessary, but not sufficient”

• good SQE practices don’t guarantee success

• make verification and, hence, validation tractable



Future Considerations, 1/3

• Identify and assess existing capabilities

+ identify the equations

+ construct levelized designs

− conceptual

− actual

− compare and contrast

+ identify and prioritize capabilities suitable for con-

version to components

• Create a common repository (e.g., sourceforge)

+ common repository is a Development Environ-

ment (DE) in the broad sense

+ does not dictate components or their interfaces

+ experts still required to assemble components into

codes

• Educate code developers in best SQE practices

• Put forth minimal requirements

+ version control

+ releases



Future Considerations, 2/3

• Convert existing high-level capabilities to components

+ refactor capability into a component

+ place component in common repository

+ refactor application code to use the component

in the common repository

+ allows for true unit testing: do it

+ maintains capability

+ is anyone willing?

+ provides for sharing of verified components

+ allows for interchanging verified components

• Write new low-level components from scratch

+ can use the best SQE practices from inception of

code

+ should be done anyway

+ requires cooperation to get used in codes



Future Considerations, 3/3

• Peer review

+ code sit-downs to assess:

− degree of verification

− ease of verification

− ease of maintenance

− ease of use

+ documents

+ presentations

+ Buggy Pageant

• Define consequences for not cooperating

• Do nothing at all; component-based development will

eventually take over as it is required.


